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This is a lecture about the power of simple ideas in mathematics.

What I like doing is taking something that other people thought was

complicated and difficult to understand, and finding a simple idea, so that

any fool – and, in this case, you – can understand the complicated thing.

These simple ideas can be astonishingly powerful, and they are also

astonishingly difficult to find. Many times it has taken a century or more

for someone to have the simple idea; in fact it has often taken two thousand

years, because often the Greeks could have had that idea, and they didn’t.

People often have the misconception that what someone like Einstein

did is complicated. No, the truly earthshattering ideas are simple ones.

But these ideas often have a subtlety of some sort, which stops people from

thinking of them. The simple idea involves a question nobody had thought

of asking.

Consider for example the question of whether the earth is a sphere or

a plane. Did the ancients sit down and think “now lets see – which is it, a

sphere or a plane?” No, I think the true situation was that no-one could

conceive the idea that the earth was spherical – until someone, noticing

that the stars seemed to go down in the West and then twelve hours later

come up in the East, had the idea that everything might be going round –

which is difficult to reconcile with the accepted idea of a flat earth.

Another funny idea is the idea of ‘up’. Is ‘up’ an absolute concept?

It was, in Aristotelian physics. Only in Newtonian physics was it realised

that ‘up’ is a local concept – that one person’s ‘up’ can be another person’s

‘down’ (if the first is in Cambridge and the second is in Australia, say).

Einstein’s discovery of relativity depended on a similar realization about

the nature of time: that one person’s time can be another person’s sideways.

Well, let’s get back to basics. I’d like to take you through some simple

ideas relating to squares, to triangles, and to knots.



Squares

Let’s start with a new proof of an old theorem. The question is “is the

diagonal of a square commensurable with the side?” Or to put it in mod-

ern terminology, “is the square root of 2 a ratio of two whole numbers?”

This question led to a great discovery, credited to the Pythagoreans, the

discovery of irrational numbers.

Let’s put the question another way. Could there be two squares with

side equal to a whole number, n, whose total area is identical to that of a

single square with side equal to another whole number, m?
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Figure 1. If m and n are whole numbers, can the two grey n×n squares have the

same area as the white m×m square?

This damn nearly happens for 12 by 12 squares: 12 times 12 is 144;

and 144 plus 144 equals 288, which does not actually equal 289, which is

17 times 17. So 17/12 = 1.41666 . . . is very close to
√

2 = 1.41421 . . . – it’s

only out by two parts in a thousand.

But we’re not asking whether you can find whole numbers m and n that

roughly satisfy m2 = 2n2. We want to establish whether it can be done

exactly.

Well, let’s assume that it can be done. Then there must be a smallest

whole number m for which it can be done. Let’s draw a picture using that

smallest possible m.

Let’s stick the two small grey squares in the top right

and bottom left corners of the big square.

Now, part of the big square is covered twice, and

part of the big square isn’t covered at all, by the smaller

squares. The part that’s covered twice is shown in dark

grey, and the bits that are not covered are shown in

white. Since the area of the original big white square is



exactly equal to the total area of the light grey squares, the area of the bit

that’s covered twice must be exactly equal to the area of the bits that are

not covered.

2n−m

m− n

m− n

Now, what are the sizes of these three areas? The

dark grey bit is a square, and the size of that square is a

whole number, equal to 2n−m; and the two white areas

are also squares, with a side equal to m− n. So, start-

ing from the alleged smallest possible whole number m,

such that m2 is twice the square of a whole number,

we’ve found that there is an even smaller whole num-

ber (2n −m) having this property. So there can be no

smallest solution. Remember, if there are any solutions, one of them must

be the smallest. So we conclude that there are no solutions.

This result has tremendous intellectual consequences. Not all real num-

bers are the ratio of whole numbers.

This new proof was created by a friend of mine called Stanley Tennen-

baum, who has since dropped out of mathematics.

Triangles

Take a triangle, any triangle you like, and

trisect each of its angles. That means, cut

each angle into three pieces, all the same

size.

Extend the trisections until they meet

at three points.

Then a rather remarkable theorem

by Frank Morley says that the triangle

formed by these points is equilateral.

And this is true for any starting trian-

gle.

Morley’s theorem is renowned as be-

ing a theorem that’s really hard to prove.

Very simple to state, but very hard to

prove. Morley stated the result in about

1900, and the first published proof didn’t

come till about 15 years later. However,

I found a simple proof, aided by my friend Peter Doyle.
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We can prove

Morley’s theorem

simply as follows.

First, please tell

me the three an-

gles A, B, C, of

your original tri-

angle. Remem-

ber they have to

add up to 180 de-

grees. Here’s the

plan. I’m going to

start from an equilateral triangle of some size and build up six other trian-

gles around it, and glue them together to create a triangle that has angles

A, B, and C, just like yours; so for some choice of the size of the equilat-

eral triangle, my construction will exactly reproduce your original triangle;

furthermore the method of construction will prove that if you trisect your

triangle’s angles, you’ll find my equilateral triangle in the middle. Here are

the six triangular pieces that we will build around the equilateral triangle.

This picture looks like a shattered version of the triangle we drew a mo-

ment ago, and indeed we’ll in due course glue the pieces together to create

that triangle; but to understand the proof correctly, you must think of the

six new triangles as pieces that we are going to define, starting from my

equilateral triangle, with the help of the values of A, B, and C that you

supplied. The previous figure is our destination, not our starting point.

We construct the six new triangles by first defining their shapes, then

defining their sizes. To define the shapes of the six triangles, we fix their

angles. We define α = A/3, β = B/3, and γ = C/3. We introduce a piece

of notation for angles: for any angle θ, we define θ+ to denote θ + 60 and

θ++ to denote θ + 120. So, for example, the three interior angles in the

equilateral triangle (which are all 60 degrees) may be marked 0+.

We fix the angles as shown. [You may check that the angles in each

triangle sum to 180.] Next, we fix the size of each triangle that abutts onto

the equilateral triangle by making the length of one side equal that of the

equilateral. These equal sides are shown by bold lines above.
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Next we fix

the sizes of the

three obtuse tri-

angles; I’ll show

you how we fix

the right-hand ob-

tuse triangle, and

you can use an

analagous method

to fix the other

two. We in-

troduce two lines

that meet the long side at an angle of β+ (a bit like dropping perpen-

diculars), and fix the size of the triangle so that both those lines have the

same length as the side of the equilateral triangle.

Now, having defined the sizes of all the triangles in this way,
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I claim that the

two shaded trian-

gles are identical

– one is the mir-

ror image of the

other. We can

see that this is

so, because they

have two identi-

cal angles (the αs

and the β+s); and

they have one iden-

tical side (the high-

lighted sides, which are equal to the equilateral’s side). There-

fore the adjacent edges of those two triangles are identical in length.

Applying the same argument six times over, we have shown that all the

adjacent edges in the figure are identical to each other, and thus established

that these six triangles will fit snugly around my equilateral triangle, as long

as the angles around any one internal vertex sum to 360 degrees. The sum

around a typical internal vertex is α+ + β++ + γ+ + 0+; that’s five +s,

which are worth 300 degrees, plus α + β + γ, which gives a total of 360.
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Thus, glueing

the seven pieces

together, I’ve made

a triangle with

your angles, for

which Morley’s the-

orem is true. There-

fore, Morley’s the-

orem is true for

your triangle, and

for any triangle

you could have

chosen.

Knots

Finally, I would like to tell you a little bit about knot theory, and about

a simple idea I had when I was a high school kid in Liverpool many years

ago.

First, what’s the big deal about knots? Knots don’t seem especially

mathematical. Well, the first thing that’s hard about knots is the question

‘Are there any?’

To put it another way, can this knot be undone?

[It’s conventional, by the way, to attach the two free

ends of a knot to each other, so that the rope forms a

closed loop.] The fact that no-one’s undone it doesn’t

mean you necessarily can’t do it. It might just mean

that people are stupid. Remember, there are simple

ideas that no one had for 2,000 years, then Einstein came along and had

them!

Now, when we fiddle around with a piece of string, changing one config-

uration into another, there are three basic things that can happen. These

are called the Reidemeister moves, after the German Professor of geometry,

Kurt Reidemeister. We’ll call these moves R1, R2, and R3.



R1 involves twisting or untwist-

ing a single loop, leaving every-

thing else unchanged.

R1←→

R2 takes a loop and pokes it un-

der an adjacent piece of rope. R2←→

R3 is the slide move, which

passes one piece of rope across

the place where two other seg-

ments cross each other.

R3←→

All knot deformations can be reduced to a sequence of these three moves.

→

Now, is there a sequence of

these moves that will enable

you to start with the knot on

the left and end with the ‘un-

knot’ on the right? You can

perhaps imagine applying a sequence of moves until it really looks rather

messy – imagine a picture like this, but with maybe a million crossings in

it.

· · · → · · · (106) · · · → · · ·

And maybe eventually, if I’m lucky, another million moves would bring me

to the unknot.

· · · → · · · →

Can you disprove this story?



It is quite hard to disprove it. I believe no one has ever tried going out

to all the mindbogglingly large number of million-crossing configurations

and checking what happens in each case. And the difficult challenge is, if

we want to prove that a knot exists, we must show that no such sequence

of moves exists.
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What I’m going to do is introduce what I call

a knumbering of knots. To make a knumbering,

you assign a little number to any visible piece of

string; and in a place where one piece disappears

under another, the two numbers associated with

the lower piece of string must be related to each

other in a way that depends on the number on the

upper piece of string. Namely, if the number on the upper piece is b, and

the lower piece’s numbers on either side of the upper piece are a and c,

then ‘a, b, c’ must be an arithmetic progression. That means the amount

by which you go up from a to b has to be exactly the amount by which you

go up from b to c.
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For example if a is 13 and b is 16, then c had

better be 19.

Now, what is the relevance of these numbers?

Well, let’s first see if we can make a knumbering.

Let’s take our old friend, the trefoil knot, and work

our way round the knot, assigning numbers to its

different segments, and see if we can satisfy the

arithmetic progression condition at every crossing. How should we start?

One thing worth noticing about the arithmetic progression condition is

that it is invariant: I can shove all the numbers a, b, and c up or down

by any amount I like, and they will still satisfy the arithmetic progression

condition. So we may as well start by assigning the labels 0 and 1 to

a couple of edges here, then we can propagate the consequences of those

choices around the rest of the knot. We’ll mark each crossing as we apply

its rule.
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So far, so good. . .
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Oh dear, there is a problem on the top edge, namely that 4 isn’t equal

to 1, and they should be equal, because there’s a 4 and a 1 both on the

same piece of rope. However, one of the great powers of the mathematical

method is I can define things how ever I like; so I’m now going to define 4

to be equal to 1. (Mathematicians call this kind of equality ‘congruence

modulo 3’.) So, phew! I cured that problem.
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There is a similar contradiction on the bottom

segment: this edge is labelled both ‘3’ and ‘0’. But

if 4 is equal to 1, than 3 is equal to 0. So everything

is all right.

We have got a knumbering.

Now, what’s the point of these knumberings?

It is very beautiful. Look at what happens when

we take a knumbered knot and apply the three Reidemeister moves to it.

Can we take the left-hand knumbering and obtain a right-hand knumber-

ing?

The answer is yes, any valid knumbering for the left-hand figure can be

copied into a valid knumbering for the right-hand figure, and vice-versa.

This is quite easy to confirm for the first two moves.
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R3←→
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2c − b2c − a

2(2c − b) − (2c − a)

For the third move, we have to confirm that 2(2c − b) − (2c − a) = 4c −

2b− (2c− a) = 2c− (2b− a).

We find that we can do any of the three moves without messing up the

rest of the knumbering.

The fact that any valid knumbering remains a valid knumbering when

a move is made or unmade implies that the number of possible knumberings

of the left-hand picture is exactly equal to the number of knumberings of

the right-hand picture.

Now, let’s return to the question of whether the trefoil knot can be

transformed into the unknot. Well, there are just three knumberings of the

unknot.
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Whereas the trefoil knot has at least four knum-

berings: the all-0, all-1, and all-2 knumberings, and

this one.

So now, we can prove that the trefoil knot can-

not be undone, because it has a different number of

knumberings from the unknot. If the trefoil knot

and the unknot were related by a sequence of Rei-

demeister moves, they would have the same number of knumberings.

This proves that knots do exist.

Tangles

I often do a little conjuring trick which consists of tieing knots. Tangles are

bits of knottiness with four ends coming out, and they have an unexpected

connection to arithmetic.

Tangles are best displayed by four square-dancers. Two dancers hold

the ends of one rope, and two dancers hold the ends of the other rope.



We can manipulate the tangle by using two moves, called twist’em up and

turn’em roun’.

When we twist’em up, The two dancers on the right hand side exchange

places, the lower dancer going under the rope of the upper dancer. Now,

we’re going to assert that each tangle has a value, and that “twist’em up”

changes the value of the tangle from t to t+1. (These values aren’t related

to knumberings; you can forget about knumberings now.)

twist’em up

t ⇒ t

t + 1

When we turn’em roun’, all four dancers move one place clockwise. “Turn’em roun’”

changes the value of a tangle from t to −1/t.

turn’em roun’

t ⇒ t

−1/t

To get us started, the tangle shown below is given the value t = 0.

t = 0

Is everything clear? Then let’s go!



twist’em up

⇒

t = 1

twist’em up

⇒

t = 2

twist’em up

⇒

t = 3

twist’em up

⇒

t = 4

turn’em roun’

⇒

t = −1/4



t = −1/4 – twist’em up t = 3/4 t = 3/4 – twist’em up

t = 7/4

t = 7/4 – turn’em roun’
t = −4/7

t = −4/7 – twist’em up t = 3/7

t = 3/7 – twist’em up t = 10/7



t = 10/7 – turn’em roun’
t = −7/10

t = −7/10 – twist’em up
t = 3/10

t = 3/10 – twist’em up



t = 13/10

Now, it is your job, dear reader, to get the dancers back to zero. But

you are only allowed to do the two moves I’ve spoken of. Do you want to

twist or do you want to turn?

What you’ll find is that if you use your knowledge of arithmetic to get

the value back to zero, the tangle will indeed become undone. It’s magic!

[The sequence chosen by the audience in Cambridge was: 13/10
r

−→−10/13
u

−→ 3/13
r

−→ −13/3
u

−→ −10/3
u

−→ −7/3
u

−→ −4/3
u

−→ −1/3
r

−→ 3
u

−→

4
r

−→ −1/4
u

−→ 3/4
r

−→ −4/3
u

−→ −1/3
u

−→ 2/3
r

−→ −3/2
u

−→ −1/2
u

−→ 1/2
r

−→ −2
u

−→ −1
u

−→ t = 0 (with twist’em up and turn’em roun’

abbreviated to
u

−→ and
r

−→, respectively).]

This is an example of a very simple idea. We already knew some arith-

metic – but only in the context of numbers; and we didn’t realize it applies

to knots. So in fact this little branch of knot theory is really just arithmetic.

Having found this unexpected connection, let’s finish with something

fun. Start from t = 0, and turn’em roun’. What do we get?

turn’em roun’

⇒

t = −1/0

Hmm! Now we’ve got −1/0, isn’t that some sort of infinity, or minus

infinity?



Let’s see what you get when you add one to infinity. Does adding one

to infinity make any difference? Twist’em up!

twist’em up

⇒ ⇒

∞ ∞+ 1 =∞!

Isn’t that nice? We add one to infinity, and we get infinity again.

So, this is a powerful idea that we mathematicians use: You take some-

thing you’ve learnt in one place, and apply it to something else, somewhere

where it’s not obvious that there is any mathematics, and there is.


